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dense matter by crashing
together the nuclei of gold
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Already, the results have caused quite a stir in the research

community

"The expenmental collaborations are stll taking a cautious
approach whereas people ke me, who use model calculations,
are already S0 excited about the data because we believe

°

they have actually found the elusive state known as the

quark-agluon plasma,” commented theoretical nuclear physicist

Steffen Bass from Duke University.,

The QGP is the state postulated to be present just 3 few
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e on April 18™, 2005, BNL
announced in a press release that
RHIC had created a new state of
hot and dense matter which
behaves like a nearly perfect
liquid.

e how does one measure/calculate
the properties of an ideal liquid?

e are there any other ideal liquid
systems found in nature?
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Relativistic Fluid Dynamics

e transport of macroscopic degrees of freedom
e based on conservation laws: ¢, T"=0 9,j"=0

o for ideal fluid: T"= (e+p) u¥ WV - p gV and j* = p;u”

e Equation of State needed to close system of PDESs: p=p(T,p;)

» connection to Lattice QCD calculation of EoS

e initial conditions (i.e. thermalized QGP) required for calculation
e Hydro assumes local thermal equilibrium, vanishing mean free path

This particular implementation:

» fully 3+1 dimensional, using (T,X,y,n) coordinates
» Lagrangian Hydrodynamics

» coordinates move with entropy-density & baryon-number currents
» trace adiabatic path of each volume element



[y 3D-Hydro: Parameters @

Iniﬂal Condifionsz longitudinal profile: transverse profile:
e Energy Density: a0 | ooy density  b=zatm | gt
e (X, yM) =€, V(X 0)HO) oy £
e Baryon Number Density: 320 | <3$§ ¢ 710
ng(x,yn) =ng. W(x,y;6)H@) 10 s 0 5 ¥m
Parameters: "6 4 2 0 2 4 o o
1,=0.6 fm/c
Jemax=55 GeV/fm?, ng,,=0.15 fm3 - EOS (entropy density)
16=0.5 6,=1.5 £, u=0
: 7

B’ =233 [MeV]

e Initial Flow: v =n (Bjorkens solution); v;=0
10

Equation of State: 0

120 140 160 180 200
T M
e Bag Model + excluded volume (MeV]

e 15" order phase transition (to be replaced by Lattice EoS)
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¥ | 3D-Hydro: Comparison to RHIC

Au+Au, sqrt(s)=200 GeV
W

PHENIX p*
e Hydro =*
w— Hydro K"
s Hydro p*
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102 Separate chemical f.o.
-simulated by rescaling p,K
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PT (GQV)

e address all data in the
soft sector with one
consistent calculation

Nonaka & Bass: PRC75, 014902 (2007)
See also Hirano; Kodama et al.
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Improved Equation of State

@

Theory €

. CGC w/ fluctuations

- : " : A
e use EoS with QCD critical point (Te=159 MeV, He=550 MeV)
e interpolate to Lattice parametrization for Hg=0
s (fm) E 7T
o 6 F N
30 % 5 ‘f\ A\
() ' N
20 D :’}" .\‘)’
3 | /
10 2 +
® s L 4 S ey
0 - A
o L .
160 S Huovinen&Soltz@QM-2009
1200
T (Me%(; 0 400 800 interpolation from QCP EoS
ug (MeV) 6 +00——200 360 40— T [MeV]
\ Y,
- ) A
1000 ¢ Charged Hadrons o 10 centrality 0-6 %
e retune initial conditions to R ol i dorbeadadagala Bl IEED- TR 2 .
s (@] (W) p.(PHENIX)
dNch/dn and 1/p+ dN/dp+ 800 < 10 = o)
i © we p (Hydro
e now study effect of EoS 5 00| L+ .
—
on reaction dynamics, jetg | > 10"
©
energy-loss and HBT... a 107
® next item to-do: improved **| & 10°
initial conditions based on 0 T o0t : ; : .
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e no flavor dependence of cross-sections

e separation chemical and Kinetic freeze-out:
e normalize spectra by hand

» off-equilibrium effect!

n/s

e PCE: proper normalization, wrong v,

5
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Praka§h et al.
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" -~ pions i Viscosity: 0 05 1 15 2
E | e pions + kaons p Hadron mass (GeV)
3 —— QGP

e success of ideal RFD argues for a low
viscosity in QGP phase

» compatible with AdS/CFT bound of 1/4m

‘ QGP: Arnold, ] © Viscosity will strongly change as function
. Moore & Yaffe 7  of temperature during collision

Csernai

10

. ... 1 »need to account for viscous corrections,

" r(uev) 9 " in particular in the hadronic phase

Ideal RFD: Challenges )

e centrality systematics of v, less than perfect
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i 3D-Hydro + Micro Model Q:

full 3-d ideal RFD Hadronization UrQMD

QGP evolution Cooper-Frye ‘ hadronic

e rescattering

Monte Carlo

TC Tew t fm/c
4 )

Hydrodynamics ‘micro. transport (UrQMD) \

* ideally suited for dense systems

® no equilibrium assumptions
— model early QGP reaction stage » model break-up stage

* well defined Equation of State + > calculate freeze-out

> includes viscosity in hadronic phase
* parameters:

® 5
— initial conditions parameters:

— (total/partial) cross sections
- y,

— Equation of State

\_

matching condition: S.A. Bass & A. Dumitru, Phys. Rev C61 (2000) 064909
D. Teaney et al, nucl-th/0110037
T. Hirano et al. Phys. Lett. B636 (2006) 299

o generate hadrons in each cell using local T and g C. Nonaka & S.A. Bass, Phys. Rev. C75 (2006) 014902
\ y

e use same set of hadronic states for EoS as in UrQMD
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3D-Hydro+UrQMD:

Results

Au+Au, sqrt(s)=200 GeV

STAR 510 %
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3D-Hydro+Micro: Outlook

e benchmark comparison between different ideal RFD+Micro
implementations (TECHQM project / Nonaka to coordinate)

o study sensitivity to EoS

o explore different initial conditions (Glauber vs. CGC - beware of
extreme scenarios!)

e redo comparison to RHIC data with new EoS & initial conditions

e develop Hydro+Micro converters for vRFD
e develop 3+1D vRFD+Micro as standard model for bulk evolution
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n/s of a Hadron Gas

N. Demir & S.A. Bass: PRL 102, 172302 (2009)
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Viscosity at RHIC

pre-equilibrium

M. Prakash, M. Prakash, R. Venugopalan & G. Welke: Phys. Rept. 227, 321 (1993)

P. Arnold, G.D. Moore & L.D. Yaffe: JHEP 05: 051 (2003)

hadronic phase
QGP and
. ) and freeze-out
hydrodynamic expansion
d Ran, 5 .
o . %"
1 6 S pe
a0 S P4
L ] R P00 QL SR
r y l O > '? “.’
hadronization

= .

5 = LI LI ! LI |

é e large elliptic flow .

C [ Eecaas ions + kaons
L | qer & success of ideal RFD: 2{perieliig] Woelei ek

| ds/cFT e T —. w/ significant & increasing
3 F | ] 7 4 mean free path:
N : large viscosity
1 é \qu 3

— o viscosity of matter @ RHIC changes
10' 10? 10° 10* : :

r(MeV) strongly with time & phase
_ e how can we learn more about the

L.P. Csernai, J.I. Kapusta & L. McLerran: Phys. Rev. Lett. 97: 152303 (2006)

viscosity of QCD matter?
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|Microscopic Transport: n/s of a Hadron Gasl

@

Theory

e for particles in a fixed volume, the stress
energy tensor discretizes

part

TY 1N
ey
J

—1

p*(3)p?(7)
p°(J)
e and the Green-Kubo formula reads:

;/OOO dt (m*Y(0) 7Y (1))

~

(En’rropy: A

e extract thermodynamic quantities via:

G 1
pY(J) vV

e use Gibbs relation (with chem. pot. extratced via SM)

Npart

> ()

j=1

Npart

2

j=1

1
3V

P

(6 + P — Miﬂi)
SGibbs — T

\_

.

N
N
-

le-10

6
)

Y(O)> (GeV /fm

O)w

Xy

<TT "(

J

' ®evaluating the correlator numerically, e.g. in

0 100 200

Time (fm/c)

300

400

UrQMD one empirically finds an exponential
decay as function of time

- eusing the following ansatz, one can extract the

relaxation time Tg:

(x7(0) 77 (1)) o exp (—i)

T

- e the shear viscosity then can be calculated

from known/extracted quantities:

1= T (T O)

D
U
K
€

Tﬂ' P
A. Muronga: Phys. Rev. C69: 044901, 2004 )
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@ n/s of a Hadron Gas

first reliable calculation of of n/s for a full
hadron gas including baryons and anti-baryons

J

-
¢ low temperature trend

qualitatively confirms chiral
pion calculation

e above T=100 MeV: n/s=l
remains roughly constant

e1/s is a factor of 3-5 above
range required by viscous RFD
analysis!

\ J

(o breakdown of VRFD in the
hadronic phase?

e what are the consequences for
n/s in the deconfined phase?

\_ J

0.1

= KSS bound: 1/4xn
=== chiral pions

QO hadron gas w/ ug=0u ~0

N. Demir & S.A. Bass: PRL 102, 172302 (2009)

P ¢S n

I ] 1 ] 1 1 I

100
Temperature (MeV)
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Dynamic Systems: n/s at non-unit fugacities

\_

o freeze-out temperature required by RFD fo reproduce spectral shapes: ~110 MeV
e temperature extracted from Statistical Model fits to hadron yields/ratios: ~160 MeV

» separation of chemical and kinetic freeze-out in the hadronic phase!
» picture confirmed by hybrid hydro+micro calculations
» off-equilibrium effect - implies non-unit species-dependent fugacities in RFD

box calculations w/ non-unit Fugaci’ries:\

e initialize matter w/ equilibrium distributions,
but off-equilibrium yields, corresponding fo
desired fugacities

e perform viscosity measurement before
system relaxes into equilibrium

e verify fugacities at time of measurement w/
statistical model analysis

J
\

(e non-unit fugacities reduce n/s by a

factor of two to n/s~0.5

e1n/s still above value required for
viscous RFD fit fo data

»n/s needs to be significantly lower in
deconfined phase for VRFD to

_ reproduce elliptic flow data!

0.1

N. Demir & S.A. Bass: arXiv:0812.2422 [ KSS bound. 1

®
¢

|
/4xn
O ».~(1.0-1.2),~(1.0-1.2)

% er%e g

100 150 200
Temperature (MeV)

T. Hirano & K. Tsuda: Nucl. Phys. A715, 821 (2003)
P.F. Kolb & R. Rapp: Phys. Rev. C67, 044903 (2003)
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% Conclusions and Outlook QF

',*" "Hy,'

-
Hybrid Hydro+Micro models:

¢ 3+1D Hydro + Micro models have been very successful in describing the bulk
properties of hot & dense QCD matter created at RHIC

e the microscopic treatment of the hadronic phase does not only address viscous
effects, but also the inherent off-equilibrium evolution of the system during its
break-up stage

ein the future, 3+1D VRFD + Micro models should be pursued, combining the best
possible description of the low viscosity deconfined phase with the optimum

. description of the hadronic phase )

4 N * ] |
Viscosity of QCD matter: & ek

eneed to parametrize n/s as function & Pl e T
of T for VRFD calculations | ‘

e trajectory of n/s in a heavy-ion s
collision as a function of temperature |2
may have complicated shape

e calculation of hadronic n/s will help
to constrain n/s in the deconfined

phase
- J

0.1

100 150 200
Temperature (MeV)
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The End



what can ordinary matter, e.g.
He or H.O teach us about n/s?

7/s

~

10 T T T T T T T T T T

— P=0.1 MPa

- P=0.227455 MPa
P=1 MPa

5 - —
0 L | A .
0 5 10 15 20
T(K)
30 e e L
- — P=10 MPa
s | - P=22.06 MPa 3
C --- P=100 MPa ]
20 ]
15 F .
10 [ -
5 — —
np L ‘ | . L . | . L
200 400 600 800 1000 1200

T(K)
en/s has minimum &
discontinuity at T¢

Theory €
temperature dependence of n/s in QCD can be
estimated in low- and high-tfemperature limit:

e low temperature: chiral pions
® high temperature: QGP in HTL approximation
'| R pions |
: e pions + kaons ]
4 b | —— QeGP :
§ \ AdS/CFT :
- ‘ m. VRFD .
3 F ' =
/) - \ :
™~ : ‘ :
S ek ‘\ =
i \ .
i \ )
) \ .
: \. .
; e g
0 o  ———— .
10’ 10° 10° 10*
T(MeV)

L.P. Csernai, J.I. Kapusta & L. McLerran: Phys. Rev. Lett. 97: 152303 (2006)
M. Prakash, M. Prakash, R. Venugopalan & G. Welke: Phys. Rept. 227, 321 (1993)
P. Arnold, G.D. Moore & L.D. Yaffe: JHEP 05: 051 (2003)
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Hadronic Matter: UrQMD

-

\_

®clementary degrees of freedom: hadrons, const. (di)quarks
eclassical trajectories in phase-space (relativistic kinematics): evolution of phase-
space distribution via Boltzmann Equation:
0o P
{({915 - mvr:| fl — Ccoll

with Ccoll = N/UdQ/dﬁ2 U1 — To| [f1(P1)f1(D2) — fr(P1) f1(D2)]

e initial high energy phase of the reaction is modeled via the
excitation and fragmentation of strings

¢ 55 baryon- and 32 meson species, among those 25 N*, A*
resonances and 29 hyperon/hyperon resonance species
e full baryon-antibaryon and isospin symmetry

r

\_

main physics input and parameters: k
® cross sections: total and partial cross sections, angular distributions

® resonance parameters: total and partial decay widths

e string fragmentation scheme: fragmentation functions, formation time |

20



Infinite Matter Calculations

-

-

Strategy: confine UrQMD to box with periodic boundary conditions
e system will evolve into equilibrium state (no freeze-out occurs)
e need to disable multi-body processes to maintain detailed balance

00
7

! —
=
.-
-
&=
=
S
=
)
)
o
<
|~
=
N
a.

chemical equilibrium: Kinetic equilibrium:

e particle multiplicities saturate as function of time e isotropy of momentum distributions
e fit fo Statistical Model can be used to extract Y ® use energy spectrum fo extract temperature

£=0.3 (GeV/fm")

e= 0.3 (GeV/fm’) A
pB:pﬂ ) pli. p()

I/pE dAN/E (GeV )
=

—_—
TTTI LI

<

T I T -

o 7 (T=140 MeV) |
0 K(T=143 MeV)
N (T=149 MeV)

|
0.001 0 200
Time (fm/c)
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Q0 | Shear Viscosity: Linear Transport Equation| -
& Green - Kubo Formalism

p
Mechanical definition of shear viscosity:

eapplication of a shear force to a system gives rise fo a non-zero value of the xy-
component of the pressure fensor Pyy. Pxy is then related to the velocity flow field

via the shear viscosity coefficient n: 9
vx -

PCEy p— nay .

-t

ea similar linear transport equation can be defined for other ’rralnspor’r coefficients:

thermal conductivity, diffusion ...

\_

cusing linear-response theory, the Green-Kubo relations for the shear viscosity
can be derived, expressing N as an integral of an near-equilibrium time
correlation function of the stress-energy tensor:

1 >0 S
n = —/dgr/ dt <7Tf’3y((),0) Y (7, t)>
T 0 equil

[T Y
with the stress-energy tensor: '" (77, 1) = /dgpppg f(z,p)

22
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|I<ubo Formalism in Microscopic Transpor’rl =

e for a set of discrete particles in a fixed volume, the stress energy tensor discretizes

part

N
. pHp¥ 1 p*(5)pY(J)
om 7(70) = [P fap) om =3 Y UE
(%) ot (. p) V< p°(j)

j=1

V O
e and the Green-Kubo formula reads: 7) = a / dt (m*Y(0) 7Y (1))
0

4 )
7 " Tl eevaluating the correlator numerically, e.g. in

le-10 - UrQMD one empirically finds an exponential
|  decay as function of time

. eusing the following ansatz, one can extract
the relaxation time Ty

(5(0) 71 (2)) x exp ()

6
)

(1)> (GeV /fm

XY
N

T

()

XYy

<TT "(

¢ the shear viscosity then can be calculated
from known/extracted quantities:

. 1 | |4 x 2
0 100 200 300 400 T] — Ta1—= <7T J (O) >
Time (fm/c) T

. J

A. Muronga: Phys. Rev. C69: 044901, 2004

4 )

- J

D

K
€
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4 )
The extraction of entropy from microscopic transport models is non-trivial:

euse two independent methods to ensure accuracy
e thermodynamic quantities which can be extracted directly from box-calculation are:
pressure p, energy-density €, particle number N;, temperature T and volume V

e sum over specific entropies of all hadron
species, which can be calculated as

functions of m/T and ps/T: 0

N () ] 2 3 4 5 6
1 SPEE S fm”)

Sspecific = V Z (—) | N; comparison between Gibbs and specific
¢ _ entropy shows excellent agreement!

~J

1 part ‘,‘2 ( ) 1 Npart
- P \J _ 0
_3_VZ 2°(7) G—VZPU)
- I=1 I=1 J
- . N[ 7 ‘ | A
Method #1: Gibbs enfropy _
e extract chemical potential(s) from SM 61
® use Gibbs-relation for entropy: ;:
o — (€~ P '
Gibbs T :2 |
\_ J 8 3
r . N | F T
Method #2: specific entropy 2 5L

|En’rropy in Microscopic Transport Models' @
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|Consisfency Check: Entropy Scalingl

-

1
s ~ T2

The consistency of the entropy extraction can be verified via a scaling law
with the speed of sound of the system:

~

p
Step #1: defermine speed of sound cs,

using pressure and energy-density:

OP
2— -
CS‘<ae>

e analysis Yields c¢:;*=0.18

Step #2: plot Gibbs entropy vs.
temperature, using the scaling law

» scaling law is well reproduced

\_

P (MeV/fm’)

200

150
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50

o py=p, I T T 11

p—

T O (R

S:{(fm )

0
0.2 04 06 08 1

-

€ (GeV/fm ‘4)

10

l]()(,)

T (MeV)
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